
Design Automation for Embedded Systems, 5, 61–81 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Assessing Probabilistic Timing Constraints on
System Performance

G. DE VECIANA gustavo@ece.utexas.edu
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712

M. JACOME jacome@ece.utexas.edu
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712

JIAN-HUEI GUO jianhuei@ece.utexas.edu
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712

Abstract. We propose an algorithm for assessing probabilistic timing constraints for systems including compo-
nents with uncertain delays. We make a case for designing systems based on a probabilistic relaxation of such
constraints, as this has the potential for resulting in lower silicon area and/or power consumption. We consider a
concrete example, an MPEG decoder, for which we discuss modeling and assessment of probabilistic throughput
constraints.

Keywords: Statistical design constraints, system-level specification and design aids, hierarchical design, proba-
bilistic critical path detection, Hardware/Software co-design.

1. Introduction

This paper discusses models and algorithms to support statistical relaxations of worst case
constraints on system performance. Consider, for example, a system which is designed
to meet a delay constraintd and suppose the critical path’s delayD p is in fact random.
A design based on aworst case analysiswould ensure thatP(D p > d) = 0. In our
view, for a number of application domains, such designs may be unnecessarily conserva-
tive. For example, suppose the design constraintd can be relaxed in the sense that it can
be violated but only rarely, sayP(D p ≥ d) ≤ 10−6. Such a relaxation of design con-
straints will in turn allow for a larger set of acceptable design solutions with hopefully less
demanding performance requirements and/or power consumption. Note that even when
performance constraints are truly worst case, in the sense that the system malfunctions if
they are not met, it is reasonable, and possibly beneficial, to still relax the performance
constraints—say, to the same level of certainty as the probability of failure of the sys-
tem’s components. The examples presented in this paper suggest that one might expect to
benefit significantly from a probabilistic relaxation of worst case constraints for systems
comprising a large number of non-deterministic components. Thus the development of
techniques to support system design subject to such relaxations is important and worth-
while.

Uncertainty in the performance of a system’s components may have a variety of ori-
gins. For example, for high-level behavioral descriptions, such as those used in system

62 DE VECIANA, JACOME AND GUO

Figure 1. Sample DAG.

level and hardware/software codesign, uncertain delays may be due to data dependent
branching or loops with data dependent indices [20], [11], [10], [14], [27]. A number
of increasingly pervasive signal processing applications, such as MPEG decoding dis-
cussed in this paper, exhibit tasks with uncertain processing times, making design subject
to timing constraints quite challenging. Current system-level models use hierarchy and
aggregation as a means of controlling complexity during early design space exploration
[8], [23]. If such approaches are to succeed, and one is to reason efficiently about the
required performance of such systems during early design space exploration, it will be-
come increasingly critical to capture the performance variability of such complex system
components. In this paper we use probability distributions to model uncertainty in the
delays incurred by various activities on a directed acyclic graph (DAG) modeling the sys-
tem of interest. Such distributions may either be derived from statistical models for the
underlying source of variability, estimated based on experimental data, or gathered through
simulation/profiling.

The DAG itself captures a high-level system model representing activities that might be
carried out as execution progresses from a start to an end node. Random delays on arcs
capture activities with uncertain delays. In this model, completion of the task corresponds
to executing the activities on asingleunknown path through the graph. Given a maximum
delay constraint, our goal is to determine theprobabilistic critical pathof the DAG, which
we define as the path most likely to violate the delay constraint. Figure 1 shows a sample
DAG, with 6 nodes, edges with labeled random delays, and a possible critical pathp among
several candidates.

The problem defined above is difficult for two reasons. First, the start-to-finish delay
distribution on a path is given by the convolution of its constituent edge distributions—
when arc delays are assumed to be independent. Second, the number of paths through the
graph may grow exponentially, for large graphs, rendering individual pathwise evaluation
practically infeasible. Recognizing that we need only compute the path whose probability

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 63

of violating the delay constraint is highest, we propose an approximation for end-to-end
path delays based on the Chernoff bound. This allows us to reduce the problem to a non-
linear optimization problem which is more amenable to computation. Determination of
the probabilistic critical path allows designers to identify problematic sequences of tasks
for a given performance constraint and in turn allocate resources to meet the system’s
requirements. The problem definition, algorithm, and related work are discussed in Sec-
tion 2.

In Section 3 we turn to modeling issues. Since characterizing distributions is itself a
challenging and expensive task, we propose a crude model based on knowing the mean and
upper/lower bounds on activity delays. This simple characterization of non-determinism
gives provably conservative assessments of system performance and eliminates (in some
cases) the need for obtaining detailed statistical information on activity delays. The
next issue pertains to hierarchical modeling techniques for complex system-level behav-
ioral descriptions, that might include loops and task synchronizations, so as to obtain a
DAG which is amenable to analysis with the proposed algorithm. We do this via a set
of transformations/reductions eventually capturing the delay uncertainty on possible se-
quences of activities the system may involve. The key idea is to reduce components of
a system involving loops and/or synchronization constraints to arcs with an equivalent or
‘conservative’ delay uncertainty.

The remainder of the paper is devoted to exhibiting the effectiveness of the approach.
In Section 4 we present synthetic examples that exhibit the significant differences between
worst case and probabilistic requirements. In Section 5 we show how our approach might
be applied to modeling and assessing throughput constraints for an MPEG decoder. We
conclude with a discussion of research/implementation directions.

2. Algorithm for Assessing Probabilistic Constraints

Consider a weighted directed acyclic graphG(V, E). Suppose a source nodes ∈ V is
selected and letPs denote the set of paths starting ats. Naturally, a pathp is an ordered set
of adjacent edges in the graph,i.e., p ⊂ E . The standardcritical pathproblem assumes that
edges have fixed weights, and determines the longest path, in terms of cumulative weight,
in Ps. Algorithms to solve this problem are well known and have a runtime complexity of
2(|V| + |E |) [3]. Suppose random weights (delays)De, with arbitrary distributions, are
associated with edgese∈ E of the graph. We pose an analogousprobabilistic critical path
problem as follows: given a delay constraintd, identify which path ismost likelyto violate
the constraint and determine its probability of failure.

We shall assume edge delays are mutually independent, and denote a pathp’s delay
by D p = ∑

e∈p De. The probability that a pathp fails to meet the delay constraintd is
denoted by

πd(p) = P(D p ≥ d).

We state the probabilistic critical path problem as follows:

64 DE VECIANA, JACOME AND GUO

PROBLEM 1 Find p∗ ∈ Ps, not necessarily unique, such thatπd(p∗) ≥ πd(p) for all
p ∈ Ps, and determine the probabilityπd(p∗) that the constraint will be violated.

In general this problem is difficult to solve, primarily because the edge weights of a path
are not additive (due to the convolution) and thus cannot be decomposed along the path as is
usual when using dynamic programming approaches. In fact, by adapting a Lemma 2 in [9],
one can show that Problem 1 is NP-hard, suggesting that one should seek good heuristics.

A word of warning is in order. There are two reasons why the probabilistic critical path
problem should not be interpreted as the equivalent of the standard critical path problem
when the weights are random. First, the problem is predicated on specifying a constraint
d with respect to which a probabilistic critical path is identified. Second, and more subtly,
we compare the performance ofindividual paths with each other, rather than assessing
the maximum of the delays across all paths. If the weights were deterministic these two
problems would be equivalent however in a graph with random weights they are not. Below
we discuss related work and further elucidate this point.

2.1. Related Work

To our knowledge there is no previous work addressing the above problem—determining
the path most likely to violate a given delay constraint. However various related problems
have been researched throughly, and it is worthwhile to discuss them in connection to ours.

In particular much work has been devoted to finding the expected project duration (or
distribution) of stochastic PERT (performance evaluation and review technique) networks,
in various disciplines including operations research [7], [15], [24] and finance [28]. In
this context the DAG network represents a collection of activities that need to be carried
out where arcs with random delays model the processing times and dependencies among
activities. For PERT networks the key metric is the time until theentire set of activities
(project) is completed. When the delays are deterministic this reduces to the standard
critical path problem, however in general the stochastic problem is quite difficult. The
difficulty here lies in fact that a node with two incident edges cannot begin processing
until all predecessor activities have been completed, thus a maximum over their random
processing times needs to be taken. This difficulty has led researchers to consider either
Monte-Carlo simulation approaches, see e.g. [25], or analytical bounds which we briefly
discuss below.

In the first formulation [19] of the PERT problem the authors estimated the expected
duration of the project based on evaluating the critical path in a deterministic network where
arc delays were replaced by their expected values. This approximation is easily shown to
furnish a lower bound on the true expected duration. The key idea is that the expected value
of the maximum of two random variables exceeds the maximum of their expected values
i.e., E[max[D1, D2]] ≥ max[E[D1],E[D2]]. Since the overall project duration is given
by a sequence of such maxima the lower bound follows immediately. Work to determine
refined approximations for discrete and then continuous delay distributions, has exploited
similar structural properties, to obtain recursive approximations for the expected durations,
and then the distributions, see [7], [15], [24]. For a review of various techniques which

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 65

have been proposed for PERT networks also see [13]. Note however the key difference
between PERT networks and the probabilistic critical path problem posed above: in PERT
networks all activities in the graph must be executed prior to termination, whereas in
our problem formulation, only the a worst case sequence of activities (path) needs to
be determined. Nevertheless our work in §3 on formulating approximations for system
components requiring synchronization e.g., when two activities must be both be completed
before a third can start execution, falls in the PERT framework. However, our results
on using specific worst case distributions given known means and upper/lower bounds in
this context is new, and provides a simple way of parameterizing the “worst case” delay
distribution for such system components.

Another class of related problems, include algorithms for determining the most reliable
(or most likely) path through a network with unreliable links. This problem arises in,
network design problems, maximum likelihood sequence detection, and is the core of the
Viterbi algorithm used in communications and speech recognition applications [1]. For
this type of problem, the reliability of a path is given by aproductof the reliabilities of
the constituent edges. By taking the logarithm of end-to-end reliability one can represent
the desired metric as a sum of edge weights and reduce the problem to a standard shortest
path problem [1]. However in our setting the metric of interest is the path delay, which
unfortunately is not amenable to such analysis.

Our problem formulation is closest and inspired by recent work on a network routing
problem in [9]. The problem was to determine routes between two nodes which are most
likely to meet a given end-to-end delay constraint on a graph with random but known edge
delay distributions. The authors show that the problem is NP hard, and propose various
heuristics. By contrast with their work, herein we focus on a DAG, and on determining
paths that are most likely to violate a constraint. Although the problem is still NP-hard, we
propose a conservative heuristic based on the Chernoff bound that reduces the problem to
non-linear optimization.

Deterministicconstraint analysis has played a key role in the high-level synthesis and
design automation areas see e.g., [4], [10], and references therein. In [10] the author
discusses the importance of probabilistic analysis of min/max delay and rate constraints on
systems and proposes some analysis methods. In particular the author proposes using the
Chernoff bound to perform probabilistic timing constraint analysis on a system including
unknown loop indices. The proposed analysis while similar to ours, addresses a special
case only—specifically, a single path with delays having exponential distribution. In our
work we formulate a general probabilistic critical path problem, consider various modeling
issues, including such loops, and propose an approximate algorithm which we discuss
below. Other recent work on a related problem can be found in [26], [29].

2.2. Approximate Algorithm

We will discuss our approach based on the simple DAG shown in Fig. 1. For this example,
there are only four paths, in the setPs of paths from node 1 to 6 that need be considered. Thus
in principle one need only determine the delay distribution for each of these paths, compute
the likelihood that each of them violates the timing constraintd, and select the worst path.

66 DE VECIANA, JACOME AND GUO

The delay associated with pathp shown in the figure would beD p = D1+D3+D7. Since
we have assumed that edge delays are independent, the distribution ofD p can be determined
by taking a three-fold convolution [6]. However this is a computationally intensive step
that would need to be repeated for a potentially large set of candidate paths.

Since our goal is to determine the path with the highest probability of failure, i.e.,P(D p ≥
d), there are various approximations that might be used. In particular, whenD p is a sum
of a large number of independent random variables, the Central Limit Theorem provides a
convenient approximation for the desired probability

πd(p) = P(D p ≥ d) ≈ Q

(
d − E[D p]√

Var(D p)

)
(1)

whereQ denotes the distribution function of a standard Gaussian random variable [6]. Note
thatE[D p] = ∑

e∈pE[De] and Var(D p) = ∑
e∈p Var(De) are additive functions of the

means and variances of the edges, and are thus easily computable. One can in principle find
an approximate solution to the probabilistic critical path problem by maximizing the right
hand side of (1) over all possible pathsPs. Although this circumvents computing convolu-
tions, the remaining maximization is a difficult combinatorial problem. Moreover central
limit type approximations, may be uninformative when the paths do not consist of a large
number of independent edges and the probabilities of failure of interest are relatively small.

Thus in this paper we focus on conservative upper bounds based on the Chernoff bound,
see e.g., [5]. For a fixedθ ≥ 0 the Chernoff’s bound gives the following estimate on the
probability that a pathp, with delayD p, fails to meet a constraintd:

πd(p) = P(D p ≥ d) ≤ exp[−θd +3p(θ)], (2)

where3p(θ) = logEexp[θD p] is a convex function, known as the log moment generating
function. Since edge delays are assumed to be independent, it follows that

3p(θ) = logEexp

[
θ
∑
e∈p

De

]
= log

∏
e∈p

Eexp[θDe] =
∑
e∈p

3e(θ)

anadditivemetric along the path.
Recall that our goal is to find the worst case probability of failure over all paths inPs. As

an approximation we propose to maximize the bound in (2) over the paths inPs to obtain

πd(p
∗) = max

p∈Ps

πd(p) ≤ exp

[
−θd +max

p∈Ps

3p(θ)

]
= exp[−θd + f (θ)],

where f (θ) = maxp∈Ps3
p(θ) is convex since it is a maximum of convex functions. Next,

sinceθ is a free parameter we can minimize overθ ≥ 0, to obtain the tightest such bound,
i.e.,

πd(p
∗) ≤ inf

θ≥0
exp[−θd + f (θ)] = exp

[
− sup

θ≥0
(θd − f (θ))

]
= exp[− f ∗(d)], (3)

where f ∗(d) = supθ (θd− f (θ)) is known as the convex dual off (θ) [5] and characterizes
the exponent on our bound for the probability of failure as a function of the constraintd.

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 67

We shall assume thatd exceeds the critical path delay on the graph when edge delays are
replaced by their means. We also assume thatd is less than the critical path delay on the
graph when edge delays are replaced by their possibly infinite maximum values. These two
requirements guarantee that the supremum in (3) is achieved—see Appendix A.

Thus we propose to solve the probabilistic critical path problem based on an approximate
formulation as a convex optimization problem. The edge weight distributionsDe on the
DAG are represented via parametric weights3e(θ) = logEexp[θDe] for θ ≥ 0, i.e., the
log moment generating function of the delay distribution on the edge. This results in a
collection of DAGs with deterministic weights3e(θ) parameterized byθ . Intuitively the
larger theθ parameter the more weight importance is given to the tail end of the edge
distributions. Hence for rare events,i.e., whend is quite large relative to the mean critical
path, one would expect largerθ ’s to play a role. Our approach, summarized below, is based
on solving the maximization problem posed in (3),i.e.,

max
θ≥0

(
θd −max

p∈Ps

∑
e∈p

3e(θ)

)

Note that evaluating maxp∈Ps

∑
e∈ p3e(θ) for someθ requires determining the critical path

in a graph with edge weights3e(θ). Thus our cost function exhibits an interesting depen-
dence on the critical paths of a set of DAGs parameterized byθ . Also note that since the
Chernoff bound gives a guaranteed albeit loose upper bound on the probability of interest so
does our optimization. The proposed approximate algorithm can thus be defined as follows:

Initialization: check that the problem is “well posed” by verifying that:

1. the constraintd exceeds the critical path delay for the graph where the weights are
given by the mean edge delays;

2. and, the constraintd is bounded by the critical path delay for the graph with weights
given by the maximum (possibly infinite) delay on each edge.

Optimization: determine the maximumf ∗(d)and the optimizerŝθ andp̂ for the following
optimization problem

f ∗(d) = max
θ≥0

(
θd −max

p∈Ps

∑
e∈p

3e(θ)) = θ̂d −
∑
e∈ p̂

3e(θ̂

)
. (4)

Result: a guaranteedupper bound on the probability of failure,πd(p∗) ≤ exp[− f ∗(d)],
and a candidate patĥp most likely to violate the constraint.

2.3. Algorithm Complexity and Other Remarks

Standard line search methods, seee.g., [18], can be used to determine the maximum.
However some care should taken in selecting an efficient algorithm since each evaluation of
f (θ)=maxp∈Ps3

p(θ) requires solving a standard critical path problem incurring a runtime

68 DE VECIANA, JACOME AND GUO

cost2(|V| + |E |). Note that, whatever optimization algorithm is selected, any stopping
criterion will yield anupperbound on the failure probability.

If the edges on the graph have distributions selected from a finite setC then
∑

e∈p3e(θ) =∑
c∈C n(p, c)3c(θ), wheren(p, c) is the number of elements of typec on pathp. Such a

representation may be appropriate and improve the algorithm’s efficiency in some cases,
particularly when considering a further optimization oversets of possible implementations,
i.e., various parametersc.

Oncep̂ is obtained one might attempt to accurately compute the probability of failure for
the path by directly performing the convolution of its edge’s delay distributions. For long
paths this might be a prohibitively expensive operation. Alternatively, if the path achieving
the maximum has a large number,n, of random edges with distributions selected from
C, as described above, then one can use the Bahadhur-Rao estimate to improve upon the
Chernoff estimate in (3). Moreover it may also be of interest to examine thesensitivity
of the probability of failure to the constraintd. Techniques for performing these tasks are
further discussed in the Appendix B.

3. Modeling Issues

In order to obtain a system model that fits into the above framework it must be represented
by a DAG, wherein system execution corresponds to following one of a set of possible
paths. Thus, for example, if the actual system includes a loop, the loop will need to be
reduced to a single component with an equivalent delay uncertainty. Moreover the delay
uncertainty associated with each activity needs to be appropriately characterized, which can
be somewhat laborious. In this section we first discuss a simple and conservative approach
to modeling delay distributions, and then turn to mechanisms for reducing system models
including probabilistic branching information, looping and/or synchronization to a DAG
which is amenable to analysis by our approach.

3.1. Modeling Edge Delay Distributions

In practice it may be difficult to precisely characterize the delay distribution of a given
activity, or equivalently the corresponding functions3e(θ) = logEexp[θDe]. However,
one may be able to place reasonable upper and lower bounds on the delays, and identify
their means. Given such a characterization, Fact 3.1 below, shows that one can find a simple
uniform upper bound on3e(θ) for De. By replacing the weights on such edges of the graph
by their upper bounds, we can obtain a conservative estimate for the probability of failure.

FACT 3.1 (Seee.g., [21], [12]) Suppose that bounds, le ≤ De ≤ ue, are known for the edge
(or path) delay, as well as an upper bound me on the average delayEDe ≤ me ≤ ue. Let
D̄e be a Bernoulli random variable on{le,ue} with mean me, i.e.,

P(D̄e = ue) = me− le
ue− le

, and P(D̄e = le) = 1− me− le
ue− le

,

then∀θ we have that3e(θ) ≤ 3̄e(θ) = logEexp[θ D̄e].

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 69

Figure 2. Probabilistic branching, looping, and synchronization reductions.

3.2. Hierarchical Representations and Reductions to Directed Acyclic Graphs

In general, hierarchical high-level system models (e.g., data-control flow graphs, see [4])
comprise a variety of nodes and arc’s representing computations and flow of control con-
structs, including branching, looping, and possible synchronization requirements, seee.g.,
[14], [11], [8], [20], [23]. Rather than formally defining such a framework we will exhibit
some cases that arise and the manner in which they are reduced to a corresponding DAG.
Below we show how the delay weights associated with traversing the nodes in Fig. 2 can
be reduced toequivalent path weights. Generalizations of these cases to more than two
non-intersecting (independent) sub-paths should be clear from the discussions below.

3.2.1. Reducing Nodes with Probabilistic Branches

Consider the left node in Fig. 2. Within the node, a branch is modeled probabilistically,
in the sense that one of the two sub-paths,p1 or p2, is selected at random. Suppose the
branching probability isγ then the weight for the sub-pathp through this node is given by

3p(θ) = γ3p1(θ)+ (1− γ)3p2(θ).

Note that if a branch is not modeled probabilistically (due to lack of information) then both
paths would be kept in the eventual DAG.

3.2.2. Reducing Nodes with Iterations or Feedback Loops

Consider the middle node in Fig. 2. It represents a node in which there is an uncertain
number of iterations through pathp1, which can be modeled via a loop index random
variable, sayN > 0. Let D(n), denote the delay for thenth loop execution. Suppose
these delays have a common distribution,D(n) ∼ D p1, and are mutually independent and
independent of the loop indexN.

70 DE VECIANA, JACOME AND GUO

The delayD p for a sub-path through this node isD p =∑N
n=1 D(n), i.e., a sum of a random

number of random variables. The weight for the node can be computed by conditioning on
N to obtain

3p(θ) = logE[expθD p] = logE

[
E

[
expθ

N∑
n=1

D(n) | N

]]
= logE[(E[expθD p1])N] = log MN(E[expθD p1]),

whereMN(z) = E[zN] is the probability generating function of the loop indices probability
mass function.

For example, suppose the loop index,N, is modeled by a geometric distribution with
parameterγ , i.e., after completion of any iteration the probability of looping back is 1− γ .
In this caseMN(z) = γ z

1−z(1−γ) and the overall weight for the sub-path through the looping
node is

3p(θ) = log

[
γ exp[3p1(θ)]

1− exp[3p1(θ)](1− γ)
]
.

If the loop index is deterministic,i.e., P(N = n) = 1, then the corresponding DAG would
unravel the loop,i.e., the weight for a path through this node would be3p(θ) = n×3p1(θ).

3.2.3. Reducing Nodes with Synchronization Constraints

In general synchronization is the most difficult abstraction to handle, particularly in a setup
with random delays. Consider the rightmost example in Fig. 2, where two pathsp1 andp2

must synchronize prior to leaving the node. The delay incurred in this node,D p, is given
by D p = max[D p1, D p2], the maximum of the delay along the two paths. The weight for
this node would be

3p(θ) = logEexp[θD p] = logEexp[θ max[D p1, D p2]] .

Unfortunately there is no general way to compute this metric, without explicitly computing
the distributions for the maximum of the delays for the two paths.

Notice that whereas for graphs with deterministic delays we need only consider the worst
case path to deal with synchronization, in the case of random path delays, both paths
contribute to the characteristics of the synchronization time—it is this coupling that makes
this case difficult to address. Below we consider several special cases and propose ad hoc
approximations that deal with a limited amount of synchronization without requiring costly
explicit computation of distributions. Although the problem falls in the general class of
PERT problems discussed earlier [13], for which some approximation techniques exist,
herein our focus is on obtaining parametric approximations for the log moment generating
function of system elements including synchronization.

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 71

Deterministic Path Combined with Random Delay Path

Consider the case where only one of the paths, sayp1 has “randomness” while the second
path p2 has a constant delaydp2. Assuming the distribution ofD p1 is known one might
consider explicitly computing the node’s weight:

3p(θ) = logEexp[θ max[D p1,dp2]]

= log
[
exp[θdp2]×P(D p1≤dp2)+E[exp[θD p1] | D p1>dp2]×P(D p1>dp2)

]
(5)

≤ log
[
exp[θdp2]×P(D p1≤dp2)+ exp[3p2(θ)]

]
. (6)

Two examples where (5) might be used to compute the weight for a synchronization node
follow: first, supposeD p1 ∼ uniform[l ,u] and the non-trivial case wherel < dp2 < u then

3p(θ) = log

[
exp[θdp2]

dp2 − l

u− l
+ exp[θu] − exp[θdp2]

u− l

]
;

second, supposeD p1 ∼ exponential(λ) then

3p(θ) = log

[
exp[θdp2](1− exp[−λdp2])+ λexp[(θ − λ)dp2]

θ(λ− θ)
]
.

The upper bound (6) could be used to simplify computations in other cases.

Paths with Delays on Bounded Intervals and Known Means

Suppose the delays onp1 and p2 have upper and lower bounds and known means,i.e.,
l pi ≤ D pi ≤ upi with ED pi = dpi for i = 1,2. In this case the synchronization time
satisfies the following inequalities:

l p = max[l p1, l p2] ≤ D p = max[D p1, D p2] ≤ max[up1,up2] = up and

ED p = dp ≤ dp1 + dp2.

Based on Fact 3.1 a conservative approximation for the weight ofD p is that of a Bernoulli
random variableD̄ p with

P(D̄ p = up) = min[dp1 + dp2,up] − l p

up − l p
= α, and P(D̄ p = l p) = 1− α.

More explicitly we have that

3p(θ) ≤ 3̄p(θ) = logEexp[θ D̄ p] = log
{
exp[θ l p](1+ α(exp[θ(up − l p)] − 1))

}
.

72 DE VECIANA, JACOME AND GUO

Table 1.Probabilities of constraint violation and Chernoff approximations.

m= 1/2 m= 1/4

n = 10 n = 20 n = 80 n = 10 n = 20 n = 80

Prob. of
failure

Exact 1.07× 10−2 2.01× 10−4 2.69× 10−14 2.96× 10−5 1.61× 10−9 1.35× 10−34

Chernoff 2.52× 10−2 6.35× 10−4 1.63× 10−13 7.38× 10−5 5.45× 10−9 8.81× 10−34

By using the delay metric̄3p(θ) for this node we can proceed safely knowing we will still
obtain an upper bound on performance. Note that ifdp1 + dp2 ≥ up then this reduces to
using the worst case upper bound on synchronization. However whendp1 + dp2 < up we
can still glean some information on the probabilistic behavior of that node.

Last Resort Conservative Bound

If the paths in the node are “short” relative to the critical path of the graph then a simple
upper bound can be devised by noting that, max[D p1, D p2] ≤ D p1+ D p2, so it follows that

3p(θ) ≤ logEexp[θD p1] + logEexp[θD p2] = 3p1(θ)+3p2(θ).

This is likely to be conservative in the probabilistic sense, yet may still be reasonable when
compared to the results obtained using the worst case edge delay.

4. Synthetic Examples: Why Use Probabilistic v.s. Worst Case Critical Paths?

For simplicity let us assume that all edge delays are independent and identically distributed
Bernoulli random variables with meanm, i.e., P(De = 1) = m andP(De = 0) = 1−m.
Suppose there is a single path through the DAG representing a system and it hasn edges
so D p = ∑n

i=1 Di . Clearly the worst case critical path would have a length ofn. A
probabilistic analysis might consider the likelihood that the delay exceeds 90% of the worst
case delay,i.e., P(D p ≥ 0.9n). Table 1 exhibits some results for this setup, where both the
lengthn of the path and the meanm of the edge delays are varied.

Whenm = 1/2 and the path is relatively long, sayn = 20,80 the probability of failure
are O(10−4) and O(10−14) respectively, possibly small enough to be neglected. Thus a
delay constraint which is 90% of the worst case, is very likely to be met. Form = 1/4
even a path with a moderate number of elementsn = 10 has a small probability of failure
O(10−5) again showing that a probabilistic relaxation of the constraint is likely to be
advantageous.

Based on this simple example it should be clear that as we consider increasingly large
systems with many uncertain elements, the gains of a probabilistic relaxation of constraints
will accrue. Moreover if the delay distributions are such that the average performance
is significantly smaller than the worst case bounds,e.g., 75% smaller whenm = 1/4,
then probabilistic constraints are likely to allow a significant relaxation over the worst

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 73

Figure 3. Probabilistic versus worst case critical paths.

case critical path. The failure probabilities in Table 1 were computed exactly based on
Bernoulli distributions and via the Chernoff bound used by our algorithm. Clearly the
results compare favorably, and as expected the Chernoff bound gives an upper bound on
the failure probability. In summary these examples show that if indeed there is sufficient
uncertainty in the performance of elements on a reasonably large graph, the proposed
method is likely to pay off handsomely if one can allow for a probabilistic relaxation of
constraints.

In general the probabilistic and conventional critical paths need not coincide. Indeed,
consider the graph in Fig. 3, where three edges have independent Bernoulli distributions on
{0,1} with means 1/2,1/2,1/8 and the fourth is deterministic with mean 1.2. The worst
case critical path is obviouslyp2 with a delay of 2.2. Now, given a delay constraintd = 1.5
one can easily show that the probability of violation is largest onp1, i.e., P(D p1 ≥ 1.5) =
1/4 > 1/8 = P(D p2 ≥ 1.5). This suggests that a designer optimizing a system based
on worst case informationmaybe addressing the wrong path, at least when a probabilistic
relaxation of system constraints is possible.

5. Assessing Probabilistic Constraints for MPEG Video Decoders

In this section we illustrate the practical interest of the proposed algorithm for probabilistic
constraint analysis by considering MPEG video decoders [16], [27], [2], [17]. The MPEG
decoder was chosen because of the presence of non-deterministic (data dependent) delays
in some of the key decoding sub-tasks. This example illustrates how the inherently variable
delays associated with these tasks makes it interesting to assess probabilistic throughput
constraints.

5.1. Background on MPEG-2

A video stream consists of a sequence of pictures or frames sampled at a given rate. Three
basic types of pictures are defined:intra-codedpictures, which are coded without reference
to other pictures;forward/backward predictively codedpictures, which can use motion
prediction from a past/future picture; andbidirectionally-predictively codedpictures, which

74 DE VECIANA, JACOME AND GUO

Table 2.Estimates of branching probabilities for MPEG macroblock decoding.

type of macroblock coding

frame type fraction skip intra-coded forward/backward bidirectional

I 1/15 0 1 0 0

P 4/15 0.0173 0.0658 0.9169 0

B 10/15 0.0848 0.0050 0.2226 0.6876

can use motion prediction from both past and future pictures. These are referred to as I, P
and B pictures respectively.

Pictures are in turn subdivided into a number ofmacroblocks—a 16 by 16 pixel region.
Depending on the picture type, a good match might be sought between its macroblocks and
other pictures in the sequence, based on computingmotion vectors. Thus a macroblock
can be:

• causal (forward coded):defined from a previous picture, —allowed for macroblocks
within P and B-pictures;

• non-causal (backward coded):defined from a future picture—allowed for macroblocks
within B-pictures only;

• interpolative (bidirectionally coded):defined from a past and a future picture—allowed
for macroblocks within B-pictures only.

Non-motion compensated macroblocks, are allowed for all types of pictures, and are said
to beintra-coded.

As the MPEG-2 decoder reads the bitstream, it identifies the start and type of a coded
picture, and then decodes each macroblock in the picture, as shown in Fig. 4.

In Fig. 4, N represents the number of macroblocks in a picture—for the streams being
considered a picture is comprised of 330 macroblocks. The shaded ellipses in Fig. 4
represent basic flow of control decisions taken during the decoding of each macroblock
within a picture. Table 2 shows estimates of branching probabilities for these decision
points. These estimates were generated by running a software decoder on a collection
of MPEG video traces. The first two columns in Table 2 identify the type of picture (I,
P, or B) and the percentage of occurrence of that particular type of picture in the fixed
sequence of pictures considered for our MPEG-2 decoder. The third column in the table
gives the branching probability for the first decision point in Fig. 4, i.e., the probability that
a macroblock will be skipped within a P or a Bpicture (note that all macroblocks within
an I pictures are intra-coded). The three last columns in Table 2 give the probability that a
given macroblock will be intra-coded, forward/backward coded, or bidirectionally coded,
for I, P and B pictures.

The performance of an MPEG-2 decoder is determined by the individual performance
of five key modules: Variable Length Decoding (VLD), Inverse Quantization (IQ), In-
verse DCT (IDCT), Pixel Interpolation (PI), and Pixel Add (PA) [16]. However not all
the modules are executed for every macroblock. In particular, as shown in Fig. 4, none

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 75

Figure 4. Macroblock decoding in an MPEG decoder.

of the modules is executed for non-coded (or skipped) macroblocks, and the PI and PA
Modules are not executed for intra-coded macroblocks. Moreover, the processing done by
the PI and PA Modules for bidirectionally coded macroblocks is twice of that required by
forward or backward coded macroblocks, since one additional reference macroblock needs
to be considered in the first case. (This extra-processing is the reason for the separation
of bidirectionally coded macroblocks from the two other types of motion compensated
macroblocks in the control flow graph shown in Fig. 4.)

The algorithm-level descriptions of the MPEG-2 modules referred to above have been the
focus of extensive studies on optimizations/transformations geared towards performance
enhancement [16], [2]. In our example, we have adopted the set of highly optimized
algorithmic descriptions derived by Lee and Kim [16]. In these behavioral descriptions, the
VLC and IQ modules are merged in order to save on write/read cycles to memory.

76 DE VECIANA, JACOME AND GUO

Table 3.Time estimates (# cycles per macroblock) for MPEG modules.

macroblock Option 1 Option 2
prediction type

VLD + IQ (Average) any 484 436

IDCT any 2,304 1,152

Pixel
Interpolation

forward/backward 320 160

bidirectional 640 320

Picture
Add

forward/backward 512 256

bidirectional 1 024 512

5.2. Using Probabilistic Constraint Analysis to Guide the Design of an MPEG2 video
Decoder

The objective in this example is to define/specify the RTL architecture (functional units
and registers/memory) for the key MPEG-2 decoder modules referred to above, so as to
derive a decoder supporting a throughput of 30 frames/sec (which translates into a 33.3 ms
decoding time per picture).

Design Option 1

The modules’ RTL descriptions of our initial design, referred to as Option 1, were directly
derived from the modules’ algorithmic descriptions given in [16]. The scheduling of op-
erations within each module was strictly performed based on data dependencies,i.e., the
performance of such modules is never compromised by resource sharing. Memory blocks
were assumed to be implemented by RAMs with a single read port (with two cycle read
operations) and a single write port.

Table 3 shows the resulting execution delays (in # cycles) for the various MPEG-2 decod-
ing modules. As mentioned previously, the execution delays of the PI and PA modules are
given separately for bidirectionally coded and for forward/backward coded macroblocks.

A crucial observation needs to be made with respect to the numbers shown in Table 3 for
the VLD+IQ Module. The execution delay of that module for each macroblock depends
on the number of non-zero DCTs per macroblock, and is thus data dependent. In [16], the
average size of VLCs in typical MPEG-2 bitstream was reported to be about 4.5 bits which
in turn translates to an average of 30 non-zero DCTs per macroblock,i.e., an average of
484 cycles per macroblock for Option 1. We have used a crude model for the delay of
the VLD+IQ module given by a Gaussian distribution with this mean (see Table 3) and a
standard deviation of 20% of the mean, to account for the variability in the stream.

In the upper part of Fig. 5, we show the decoding time distributions for I, P, and B pictures
for design Option 1, derived using the execution delays per macroblock (in # cycles) given
in Table 3, the branching probabilities given in Table 2, and the previously mentioned model

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 77

Figure 5. Decoding time distributions, for I,P and B Frames for Options 1 and 2

Table 4.Average and worst case decoding times, in # cycles for I,P and
B frames.

frame type Option 1 Option 2

I 9.200 / 10.159 5.399 / 6.357

P 11.559 / 12.500 6.564 / 7.506

B 12.807 / 13.684 7.134 / 8.011

all 12.234 / 13.684 6.866 / 8.011

Average / Maximum
(×105)

for the VLC+IQ block. Table 4 shows the corresponding average and worst case decoding
times (in # cycles) for the three types of pictures, and also the worst case and average
decoding time considering all picture types (given on the last row of the table).

The maximum combinatorial delay for our module’s RTL descriptions was determined to
be 43 ns (for a 0.7µm standard-cell library). So, for a 43 ns clock, our Option 1 design led
to an average delay per picture of 52.6 ms (i.e., the decoder would only sustain a throughput

78 DE VECIANA, JACOME AND GUO

19 pictures per second), which is below the target of 33.3 ms per picture (i.e., the desired
throughput of 30 pictures per second). Moreover, the resulting design exhibited a worst
case picture decoding delay of 58.8 ms. Option 1 was thus clearly insufficient in terms of
performance, and was dropped.

Design Option 2

A second implementation, which we will call Option 2, was then developed, taking advan-
tage of the fact that the computations performed by the IDCT, the PI, and the PA Modules
can be easily parallelized. A new design was developed that: (1) has two parallel IDCT
units (i.e., can compute simultaneously two 8x8 2-D IDCTs, each of which is done as a loop
whose body computes an 8-point IDCT); (2) has two parallel pixel interpolation and pixel
add units;1 and (3) uses RAMs with two read ports (still with a two cycle read operation).

Table 3 shows the resulting execution delays (in # cycles) for the various decoder modules
for Option 2. The bottom part of Fig. 5 shows the decoding time distributions for I, P, and
B pictures for the new design. Table 4 shows the resulting average and worst case picture
decoding delays for the three types of pictures, and also the worst case and average decoding
delays for all picture types.

The maximum combinatorial delay was determined to be 46 ns, using the same standard-
cell library, thus leading to an average decoding delay per picture of 31.5 ms, now below
the target delay of 33.3 ms per picture, and to a worst case delay of 36.5 ms. Note,
however, that the (relative) gap between the average and the worst case delays for Option 2
has increased significantly with respect to that for Option 1 (see last row of Table 4).
Indeed, in the Option 2 design we have increased the decoder performance by introducing
some parallelism in the IDCT, PI, and PA Modules. As a result, the relative percentage
of time spent on the heavily data dependent VLD+IQ Module, with respect to the total
decoding time, has increased significantly, leading to more significant delay variations
across pictures.

It is in cases such as the above that the interest of the systematic algorithm for assessing
probabilistic constraints proposed in this paper becomes obvious. Indeed, in order to
adequately evaluate the suitability of the decoder design under discussion, a key piece of
information (to be given to the designer) is the probability that the target delay of 33.3 ms
will be exceeded by the particular decoder design. Note that, based on such a probability,
and depending on the specific timing requirements of the application for which the MPEG-
2 decoder is being developed, the outcome of the evaluation might be radically different.
Specifically, the Option 2 design could be considered an adequate solution, could be an
unnecessarily expensive solution (in terms of area and/or average power consumption), or
could still require further performance improvements. Table 5 shows the probability of
violating the decoding time constraint and the Chernoff bound, for I, P and B frames and
overall obtained by our algorithm. The exact numbers are exhibited to show the quality of
the approximations (upper bound) provided by the algorithm. Based on these numbers, the
designer would proceed, either by performing yet another iteration at the RTL level, or by
starting the physical design of the decoder.

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 79

Table 5.Probabilities of violating decoding time constraint for Option 2, given a 46 ns clock.

frame type Exact Chernoff

I P(Delay≥ 33.3 ms) = 0 N/A
P P(Delay≥ 33.3 ms) = 8.364× 10−12 P(Delay≥ 33.3 ms) ≤ 1.162× 10−10

B P(Delay≥ 33.3 ms) = 5.095× 10−4 P(Delay≥ 33.3 ms) ≤ 4.103× 10−3

all P(Delay≥ 33.3 ms) = 3.397× 10−4 P(Delay≥ 33.3 ms) ≤ 2.735× 10−3

6. Conclusions

In this paper we have formulated a probabilistic critical path problem on a DAG with
random weights and proposed a novel approximate algorithm for determining the likelihood
that a constraint is satisfied. Through a discussion using synthetic and real examples,
we have made a case for the importance/relevance of assessing probabilistic constraints
on system performance, whenever the application domain is amenable to some level of
constraint relaxation. Specifically, the ability to analyze the system model so as to derive
less aggressive performance requirements on its various components has the potential to
reduce the final cost and power consumption of the system.

Our algorithm is currently being incorporated in Sky [23], a tool for assisting algorithm
and architecture-level design space exploration during system level design. We also plan
to implement the proposed algorithm on a reuse tool aimed at assisting the selection of
Intellectual Property (IP) cores during early design space exploration. The goal is to
enable informed decisions when the systems under design are subject to timing and other
constraints.

A. Algorithm Derivation

The proposed algorithm is based on determiningf ∗(d), which in turn requires solving the
following, possibly unbounded, convex optimization problem:

f ∗(d) = sup
θ

(θd − f (θ)). (7)

The initialization step ensures that the problem is “well posed” in the sense that, both,
the optimization in (7) is bounded, and the delay constraint is meaningful. Standard ar-
guments concerning convex dual functions of random variables lead to the two following
requirements, which are used to initialize the algorithm and limit the search space toθ ≥ 0
[5][page 27]:

1. If d is greater than the critical path delay for the graph in which edge metrics are the
average delays,EDe, then we need only to optimize overθ ≥ 0;

2. The optimization problem is bounded, as long as the delay constraintd can be achieved
by some path in the network. In particular, if any edge on a path inPs has a distribution
with unbounded supportR+, e.g., exponential distributions, this will automatically be

80 DE VECIANA, JACOME AND GUO

true. Prior to initiating the optimization one should ensure thatd is less than the critical
path delay on the graph with weights given by the maximum achievable2 delay for each
edge.

If these conditions are satisfied, (7) is bounded, the resulting maximizerθ̂ is unique, and there
is an associated patĥp, not necessarily unique, such thatf (θ̂) = maxp∈Ps3

p(θ̂) = 3 p̂(θ̂).
As a result one obtains a guaranteed upper bound (3) and a candidate pathp̂ for the one
most likely fail the constraint.

B. Bahadur–Rao and Sensitivity Estimates

Consider the framework suggested in Section 2.3. Suppose that3(θ) =∑c∈C
n(p̂,c)

n 3c(θ)

wheren = ∑c∈C n(p̂, c), andσ̂ 2 = d23(θ̂)

d2θ
. If the path p̂ resulting from the optimization

in (7), has a large number of elementsn the Bahadhur–Rao estimate [5] gives the first
approximation below

P

(∑
e∈ p̂

De > d

)
≈ 1√

2πnθ̂2σ̂ 2
exp[− f ∗(d)] ≈ 1√

4π f ∗(d)
exp[− f ∗(d)].

The second approximation is a heuristic proposed in [22] requiring no further computation
beyond the original exponent obtained from the optimization. In either case the new esti-
mates forπd(p̂) are likely to be more accurate, but are no longer guaranteed to be upper
bounds for the probability of failureπd(p∗).

It is also of interest to asses changes in the probability of failure upon varying the delay
constraintd. To this end one could construct a parametric fit,e.g., quadratic, for the
convex functionf ∗(·) based on evaluating the function at several points. Notice thatf ∗(·)
determines the probability of failure through the exponent, so function approximation errors
would translate to even larger errors on the estimates of the failure probability. Nevertheless
we believe this can be useful to quickly assess thesensitivityof the probability of failure to
the system constraintd.

Acknowledgments

This work is supported by by Grant ATP-003658-088 of the Texas Higher Education Co-
ordinating Board. The work of M. Jacome is also supported by by an NSF Career Grant
MIP-9624321.

Notes

1. Such parallelization is quite inexpensive in terms of silicon area, since the computations performed by those
two modules are very simple.

2. We can define this rigorously as,de = sup{d | P(De ≥ d) > 0}.

ASSESSING PROBABILISTIC TIMING CONSTRAINTS 81

References

1. Bertsekas, D. 1995.Dynamic Programming and Optimal Control, volume 1. Athena Scientific.
2. Bhaskaran, V., Konstantinides, K., Lee, R., and Beck, J. 1995. Algorithmic and architectural enhancements

for real-time MPEG-1 decoding on a general purpose risc workstation.IEEE Trans. Circ. & Syst. Video
Tech.5(5):380–386.

3. Cormen, T., Leiserson, C., and Rivest, R. 1990.Introduction to AlgorithmsThe MIT Press.
4. de Micheli, G. 1994.Synthesis and Optimization of Digital Ciruits. McGraw-Hill, Inc.
5. Dembo, A., and Zeitouni, O. 1992.Large Deviations Techniques and Applications. Boston: Jones & Bartlett.
6. Feller, W. 1971.An Introduction to Probability Theory and Its Applications, volume 1-2. J. Wiley & Sons.
7. Flukerson, D. 1962. Expected critical path lenghts in PERT networks.Oper. Res10(6):808–817.
8. Gajski, D., Vahid, F., Narayan, S., and Gong, J. 1994.Specification and Design Of Embedded Systems. PTR

Prentice Hall.
9. Guérin, R., and Orda, A. 1996. QoS-based routing in networks with inaccurate information: theory and

algorithms.IBM Research Report 20515.
10. Gupta, R. 1995.Co-synthsis of Hardware and Software for Digital Embedded Systems. Kluwer Academic.
11. Gupta, R., and De Micheli, G. 1993. Hardware-software cosynthesis for digital systems.IEEE Design &

Test of Computers10(3).
12. Hsu, I., and Walrand, J. 1994. Admission control for ATM networks.Proc. IMA Workshop on Stochastic

Networks.
13. Kall, P., and Wallace, S. 1994.Stochastic Programming. John Wiley and Sons.
14. Kavi, K., and Bukles, B. 1986. A formal definition of data flow graph models.IEEE Trans. Computers

C-35(11).
15. Kleindorfer, G. 1971. Bounding distributions for a stochastic acyclic network.Oper. Res19:1586–1601.
16. Lee, W., and Kim, Y. 1995. MPEG-2 video decoding on programmable processors: computational and

architectural requirements.Proc. SPIEpp. 265–287.
17. Liu, N. 1996. MPEG decoder architecture for embedded applications.IEEE Trans. Consumer Elect.

42(4):1021–1028.
18. Luenberger, D. G, 1989.Linear and Nonlinear Programming. Addison-Wesley.
19. Malcolm, D., Roseboom, J., Clark, C., and Fazar, W. 1959. Applications of a technique for R & D program

evaluation.Oper. Res7:646–669.
20. De Micheli, G., and Sami, M., editors. 1996.Hardware/Software Codesign. Kluwer Academic.
21. Mitra, D., and Morrison, J. A. 1995. Multiple time scale regulation and worst case processes for ATM

network control.Proc. 34th CDCpp. 353–357.
22. Montgomery, M., and de Veciana, G. 1996. On the relevance of time scales in performance oriented traffic

modeling.Proc. IEEE INFOCOM2: 513–520.
23. Peixoto, H., and Jacome, M. 1997. Algorithm and architecture level design space exploration using hier-

archical data flows.Proc. 11th Intern. Conf. on Application-specific Systems, Architectures and Processors
pp. 71–82.

24. Shogan, A. 1977. Bounding distributions for a stochastic PERT network.Network7:359–381.
25. Van Slyke, R. 1963. Monte carlo methods and the PERT problem.Oper. Res2:839–860.
26. Tongsima, S., Chantrapornchai, C., Passos, N., and Sha, E. Scheduling with confidence for probabilistic

data flow graphs.Proc. IEEE Great Lakes Symposium on VLSIpp. 150–155. 1997.
27. Wilberg, J., Ploeger, P., Camposano, R., Langevin, M., and Vierhaus, T. 1996. Codesign of hardware,

software, and algorithms—a case study.Proc. IEEE Inter. Symp. Cir & Syst.4: 552–555.
28. Wollmer, R. 1985. Critical path planning under uncertainty.Math. Prog. Study25:164–171.
29. Zhou, T., Hu, X., and Sha, E. 1998. A probabilistic performance metric for real-time system design.Proc.

7th International Workshop on Hardware/Software Codesign, pp. 90–94.

